Teoria względności

Masa relatywistyczna

Kiedy wprowadza się temat Szczególnej Teorii Względności w szkole (o ile się jeszcze wprowadza - nie śledzę zmian w programie), jednym z pojęć, o którym się mówi, jest tzw. "masa relatywistyczna".

Jedną z konsekwencji teorii względności jest to, że im szybciej porusza się ciało, tym trudniej je bardziej rozpędzić, czyli rośnie jego bezwładność. Ponieważ od początku lekcji fizyki mówi się, że miarą bezwładności jest masa, kusi, żeby wytłumaczyć ten efekt wzrostem masy właśnie. Dzieli się wobec tego pojęcie masy na "masę spoczynkową" - masę, którą ciało ma w bezruchu - i "masę relatywistyczną" - czyli masę ciała w ruchu, większą od spoczynkowej. Od razu jeszcze równania robią się ładniejsze, bo kiedy przez m oznaczy się masę relatywistyczną, można zawsze napisać E = mc^2, a pęd wyraża się ciągle znanym z fizyki klasycznej wzorem p = mv (w wersjach z masą spoczynkową pojawia się jeszcze brzydki pierwiastek w mianowniku - zobaczymy to potem). Żyć, nie umierać.

Jeśli śledzicie w internecie artykuły lub dyskusje na temat teorii względności, pewnie nieraz słyszeliście wzmianki o masie relatywistycznej. Często tłumaczy się tym niemożliwość osiągnięcia prędkości światła ("bo masa urosłaby do nieskończoności"), albo czasem ktoś spyta, czy jak ciało się odpowiednio rozpędzi, to może się stać czarną dziurą przez wzrost masy (nie może). Relatywistyczny wzrost masy traktuje się w takich kontekstach jako fakt, pewnik.

Cóż, tym wpisem chciałbym ten stan rzeczy nieco zaburzyć ;) Okazuje się bowiem, że przy bliższym spojrzeniu pojęcie masy relatywistycznej traci wiele swojego uroku. W efekcie fizycy akademiccy raczej tego pojęcia nie używają i można się na nie natknąć właściwie tylko w szkole, w dyskusjach internetowych i w artykułach popularnonaukowych. Przyjrzyjmy się więc dokładniej, co jest tego powodem.

(więcej…)

Część 4 - krzywe i ich długość

Spis treści serii

Wskrzeszamy serię po paru latach ;)

W poprzedniej części opisałem, czym jest metryka i jak zastosować ją do liczenia długości wektorów, a także do podnoszenia i opuszczania wskaźników. Tym razem zobaczymy, jak rozszerzyć jej zastosowanie na liczenie długości krzywych. Zanim jednak do tego przejdziemy, musimy powiedzieć sobie, czym właściwie są krzywe i jak je opisywać.

(więcej…)

Część 3 - metryka

metryka1Spis treści serii

Wspomnieliśmy już o czymś takim, jak długość wektora, jednak nic o tym, co to właściwie jest. Na płaszczyźnie sprawa jest prosta - gdy przesuniemy się o v_x w osi x i v_y w osi y, odległość między punktami początkowym i końcowym wynosi \sqrt{v_x^2 + v_y^2} (co można zobaczyć, rysując trójkąt prostokątny i korzystając z twierdzenia Pitagorasa - patrz rysunek). Nie zawsze jednak musi to tak wyglądać i tu wkracza metryka.

Metryka to sposób na uogólnienie twierdzenia Pitagorasa. Nie zawsze współrzędne odpowiadają odległościom wzdłuż prostopadłych osi i nie zawsze da się utworzyć takie współrzędne (ale nie uprzedzajmy faktów). Chcemy zatem mieć jakiś sposób liczenia odległości między punktami przesuniętymi o \Delta x^\mu, gdy x^\mu to współrzędne określone w jakiś bliżej niesprecyzowany sposób.

(więcej…)

Część 2 - współrzędne, wektory i konwencja sumacyjna

Spis treści serii

Podstawowym obiektem w OTW jest czasoprzestrzeń. Jako obiekt matematyczny formalnie jest to rozmaitość różniczkowa, ale na nasze potrzeby wystarczy fakt, że jest to pewien zbiór punktów, zwanych zdarzeniami, które można opisywać współrzędnymi. W przypadku OTW czasoprzestrzeń jest 4-wymiarowa, co oznacza, że potrzebne są 4 współrzędne - jedna czasowa i trzy przestrzenne.

Współrzędne można nazywać w zasadzie dowolnie (np. x, y, z, t), ale ponieważ wielokrotnie potrzebne będzie odwoływanie się do całej czwórki współrzędnych naraz, wygodnie jest oznaczyć je numerami. Przyjęło się oznaczać współrzędną czasową jako 0, a pozostałe 1, 2, 3. Współrzędną nr \mu będziemy zapisywać tak: x^\mu (uwaga: w tym przypadku to nie jest potęgowanie!). \mu w tym przypadku nazywane jest indeksem lub wskaźnikiem (tutaj: górnym). Konwencjonalnie, kiedy mamy na myśli jedną ze wszystkich 4 współrzędnych, używamy litery greckiej; jeśli chodzi o którąś ze współrzędnych przestrzennych, używamy liter łacińskich.

(więcej…)

Część 1 - pochodne cząstkowe

Spis treści serii

Jak wspomniałem we wstępie, zakładam, że Czytelnik zna pojęcie pochodnej funkcji. Jest to dobra podstawa, ale żeby wgłębić się w teorię względności, potrzebujemy to pojęcie nieco rozszerzyć. Zapoznamy się zatem z pochodną cząstkową. Cóż to takiego?

Przypomnijmy sobie najpierw zwykłą pochodną. Pochodną funkcji f(x) zapisujemy jako f'(x) lub \frac{df}{dx}. Oznacza ona, łopatologicznie mówiąc, tempo zmiany funkcji f w miarę zmieniania argumentu x. Przykładowo, gdy f(x) = x^2, \frac{df}{dx} = 2x.

Co jednak, gdy funkcja zależy od więcej niż jednej zmiennej? Np. możemy mieć funkcję f(x,y) = x^2 + y^2, która każdemu punktowi płaszczyzny przypisze kwadrat jego odległości od początku układu współrzędnych. Jak w ogóle określić pochodną takiej funkcji?

(więcej…)